National Repository of Grey Literature 39 records found  1 - 10nextend  jump to record: Search took 0.02 seconds. 
Preparation and characterization of layers deposited by plasma polymerization based on 2-Ethyl-2-oxazoline
Kucserová, Aneta ; Horák, Jakub (referee) ; Mazánková, Věra (advisor)
The diploma thesis deals with the deposition of layers of 2-ethyl-2-oxazoline monomer in a dielectric barrier discharge in a nitrogen atmosphere. The theoretical part describes polyoxazolines, dielectric barrier discharge, plasma polymerization and diagnostic methods that describe the characteristics of the prepared layers. The experimental part deals with the deposition of layers and the determination of physicochemical properties. Finally, the results are compared with layers that were made of 2-methyl-2-oxazoline.
Study of sterilization effect of dielectric barrier discharge on eucaryotic microorganisms
Vojkovská, Hana ; Ing.Hana Grossmannová, Ph.D. (referee) ; Kozáková, Zdenka (advisor)
Nowadays the wide spectrum of decontamination methods are used for the inactivation of microorganism on various materials and subjects. The serious disadvantage of the conventional decontaminations methods is stressing of the exposed material by heat or chemicals. The presented bachelor thesis discusses plasma sterilization, which is more friendly and more effective on the wide spectrum of procaryotic and eucaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species The work was focused on studying of the effect of the dielectric barrier discharge (DBD) operating at atmospheric pressure on bioindicator Aspergillus niger. Plasma was generated in nitrogen and argon. Paper and PET-foil wer used as the carrying medium. The influence of various working conditions on the efficiency of plasma sterilization was studied. Namely it was the influence of plasma exposition time, plasma power density, the type of operating gas and type of the medium supporting the microorganism. According to our results the efficiency of the plasma sterilization increases with increasing plasma power density, resp. the plasma exposition time. When comparing the results observed for the same conditions in argon and nitrogen the higher sterilization effect was reached in argon. The sterilization time was 40 – 120 second in dependence to plasma power density, gas and carrying medium. Furthermore the influence of the carrying medium on the sterilization efficiency was prooved. It was shown, that porous materials have a ”shadowing effect” for microorganisms. The microorganism may penetrate into the paper material and embed in pits and cavities. Such penetration could preclude the interaction of plasma with the microorganism, thereby decreasing the efficiency of spore inactivation. Additionaly paper porosity complicates the detachment of spores into solution, so it is reached less microorganisms as from the PET-foil. The discharge parameters were studied by means of the optical emission spectroscopy.
Study of elementary inactivation processes acting during sterilization of procaryotic systems in dielectric barrier discharge
Bittnerová, Zuzana ; Sťahel, Pavel (referee) ; Kozáková, Zdenka (advisor)
Presented master’s thesis is focused on the study of the elementary inactivation processes acting during sterilization of procaryotic systems in dielectric barrier discharge (DBD). Sterilization is an important biomedical and food-industry application and plasma sterilization is one of the methods, which are suitable for sterilization of heat and chemical sensitive materials. Biologically contaminated samples were treated in dielectric barrier discharge operated at atmospheric pressure. The discharge was generated in argon and in nitrogen. The plasma power density was 2725,93 mW cm–3 in argon and 2325,93 mW cm–3 in nitrogen. Gram positive bacteria Bacillus subtilis and gram negative bacteria Escherichia coli were used as a bioindicator. Bacteria were spread onto the surface of Whatman No.1 filtration paper. The influence of UV radiation, reactive species, heat and plasma discharge where the synergistic function of all of the agents was studied. Effects of UV radiation and temperature were studied separately. In order to separate the effect of UV radiation generated by DBD the quartz glass transmitting UV radiation was employed. During the plasma exposition selected samples were covered with the quartz window while other samples were directly exposed to the plasma. Covered samples were exposed to UV radiation and temperature (which cannot be eliminated), samples without quartz window were directly plasma exposed (treated). Results show that for covered samples the lower inactivation was reached than by the samples directly exposed to plasma. When studying the effect of temperature, the temperature between the DBD electrodes was measured by means of a thermocouple. Afterwards the samples were placed in an oven and exposed to the same temperature as was measured between the electrodes. By comparing the results of heat treated samples and plasma treated samples it can be assumed that the influence of the temperature during the sterilization process in DBD is very low. The discharge parameters were studied by means of the Optical Emission Spectroscopy. Plasma treated samples were assessed employing Scanning Electron Microscopy (SEM). Damage of Bacillus subtilis cell wall due to the effect of plasma was observed while no effect of plasma on the structure of filtration paper was detected.
Preparation and characterization of plasma activated water for bio applications
Lemonová, Hana ; Matěj,, Klas (referee) ; Krčma, František (advisor)
The aim of this master thesis is the preparation and characterization of plasma activated water (PAW) prepared by dielectric barrier discharge at atmospheric pressure in air for the future applications in agriculture and medicine. The theoretical part is focused on plasma activated water and its effects on seeds and plants. The work also deals with the preparation and application of PAW in the world. Various types of plasma discharge configurations suitable for its preparation are described here. In the experimental part of the master thesis, distilled and tap water were chosen for activation. The concentrations of active particles in PAW generated by DBD such as nitrites, nitrates and hydrogen peroxide were determined. The value of the concentration of active particles changes probably due to mutual interactions when nitrites are oxidized by hydrogen peroxide to nitrates. Physical properties of PAW such as conductivity and pH were also characterized. After the preparation of PAW, the conductivity increases due to the increase in the concentration of active particles formed by dissociation and ionization of water molecules by plasma. The particles presented in the air, which are dissociated and ionized by plasma, also diffuse into the liquid, and contribute to this increase. The decrease in pH also corresponds to an increase in the concentration of hydrogen ions and the formation of nitric acids. Another aspect of this work was to study plasma activated water during the first eight hours after its preparation and to determine its properties. We have found that PAW prepared from tap water retains its characteristic properties for at least 8 hours and distilled water for 6 hours. In the master thesis, the analysis of plasma discharge was performed using optical emission spectroscopy. OES measurements were performed in the wavelength range 300 to 800 nm. The second positive nitrogen system (N2 (C 3u) N2 (B 3g)) and the first positive nitrogen system (N2 (B 3g) N2 (A 3+u)) were identified in the overview spectrum. Molecular nitrogen ions, OH· radicals, atomic oxygen and atomic hydrogen can be observed in the spectrum, too. The dielectric barrier discharge was also captured using a high-speed camera, and the recording shows the occurrence of multiple discharges that are spatially as well as temporary unstable.
Polymer layers prepared on the basis of 2-methyl-2-oxazoline by plasmachemical method and their diagnostics
Podzemná, Daniela ; Kozáková, Zdenka (referee) ; Mazánková, Věra (advisor)
The main topic of this bachelor thesis was preparation of 2-methyl-2-oxazoline-based thin polymer layers. These layers were prepared by plasma polymerization in a dielectric barrier discharge in an inert nitrogen atmosphere. In experimental part polyoxazoline layers were characterized using several diagnostic methods. The first one was study of layers surface using scanning electron microscopy, next was determination of contact angles and subsequent determination of free surface energy. Antibacterial properties were also investigated by antibacterial tests using a bacterial culture of Staphylococcus epidermidis.
Characterization of plasma activated water for biomedical applications
Šindelková, Kateřina ; Dzik, Petr (referee) ; Kozáková, Zdenka (advisor)
The aim of this master thesis is to characterize plasma activated water (PAW) prepared in various plasma systems using direct and indirect interaction of plasma with liquid or its surface. Plasma was generated by electric discharges at atmospheric pressure. The prepared plasma-activated water was studied with respect to its use in biomedical applications. The theoretical part deals with plasma activated water. It contains a description of the PAW preparation, its characterization in terms of produced particles or its physico-chemical properties. Also, methods for antimicrobial activity estimation or colorimetric determination of produced particles are described in this section. In the experimental part of this work, the types of discharges that were used for the PAW preparation and their comparison are presented. Two types of liquids were selected for the activation, namely distilled and tap water. Subsequently, concentrations of selected reactive particles in PAW (hydrogen peroxide, nitrates and nitrites) produced in three different plasma systems were determined. Besides the comparison of reactive particles production in various systems, their time stability was studied as well. Over time after the PAW preparation, the values of active particles concentrations have changed due to mutual interactions between the particles. Mainly, nitrites were oxidized to nitrates or vice versa depending on the PAW type and other conditions. Part of the work was also monitoring selected physical properties of PAW, namely pH value and specific conductivity. It has been found that PAW does not retain its activated properties for too long, depending on the type of preparation and methods of storage. Therefore, one of the important goals of this work was to determine and compare suitable storage conditions for PAW with respect to its potential biomedical applications.
Influence of humidity on total sterilisation effect of dielectric barrier discharge
Kramárová, Petra ; Bartlová, Milada (referee) ; Kozáková, Zdenka (advisor)
The main subject of this diploma thesis is the study of the effect of humidity on the total sterilization effect of the dielectric barrier discharge. Sterilization is a process which can eliminate all forms of life. The plasma sterilization is one of the methods that are suitable for sterilization of temperature and chemical sensitive materials. This sterilization method was proved to be effective on the wide spectrum of procaryotic and eucaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Dielectric barrier discharge (DBD) operating at atmospheric pressure was used for the sterilization of the samples. The discharge was generated in dry air and in humid air. The plasma power densities were 2 160 mW.cm-3, 2 279 mW.cm-3 and 2 760 mW.cm-3 (dry air) or 2 326 mW.cm-3 and 2 850 mW.cm-3 (humid air). Humidity of air was achieved using a wash bottle filled with water through which air flowed into the DBD reactor. Fungi spores of Aspergillus niger were used as model microorganisms. Whatman paper No. 1 was used as the carrying medium. When comparing sterilization efficiency of humid and dry air operating at the same conditions, the higher sterilization effect was observed in humid air. The sterilization effect of the DBD generated in air was compared with results obtained during plasma generation in argon and nitrogen. At the same conditions, the highest sterilization effect was observed in argon, followed by humid air, nitrogen and dry air. It was found out that in our experimental setup the active species are probably the main inactivation mechanism. The influence of temperature on the inactivation of microorganisms was completely negligible. The discharge parameters were studied by means of the optical emission spectroscopy (OES). Plasma treated samples were analyzed employing scanning electron microscopy (SEM). Damage of the microorganisms due to the effect of plasma as well as plasma effect on the structure of the carrying medium was evaluated.
Study of sterilization effect of dielectric barrier discharge on procaryotic microorganisms
Bittnerová, Zuzana ; Ing.Hana Grossmannová, Ph.D. (referee) ; Kozáková, Zdenka (advisor)
Presented bachelor thesis is focused on sterilization effect of dielectric barrier discharge on procaryotic microorganisms. Sterilization is important biomedical and food-industry application and plasma sterilization is one of the method, which are suitable for sterilization of heat and chemical sensitive materials. Biologicaly contaminated samples were treated in dielectric barrier discharge operated at atmospheric pressure. The discharge was generated in argon and in nitrogen. Gram positive bacteria Bacillus subtilis was used as a bioindicator. Bacteria was spread onto the surface of paper and PET material. Efficiency of sterilization was evaluated according to exposure time, plasma power density and process gas. The positive effect of DBD on inactivation of microorganism was observed. The efficiency of the plasma sterilization increases with increasing treatment time. As regards plasma power density, the higher density was used the more effective the sterilization was and time necessary for inactivation of all microorganisms was shorter. Sterility was observed within 60 s while using plasma power density 2,37 W/cm, when using plasma power density of 1,78 W/cm longer treatment time is neccesary. The sterilization was more effective if argon was used as a process gas. Time necessary for the most reduction of microorganisms in argon was 10 s, while using nitrogen the reduction was only 50 %.
Study of the sterilization effect of temperature and UV light present in dielectric barrier discharge
Kramárová, Petra ; Grossmannová, Hana (referee) ; Kozáková, Zdenka (advisor)
The main theme of this bachelor thesis is to study the effect of temperature and UV radiation to the total sterilizing effect of dielectric barrier discharge. Sterilization is a process, which can eliminate all forms of life. The presented bachelor thesis discusses plasma sterilization, which is one of the method, which are suitable for sterilization of heat and chemical sensitive materials. This sterilization method is effective on the wide spektrum of procaryotic and eucaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. In my thesis a dielectric barrier discharge (DBD) operating at atmospheric pressure was used for the sterilization of the samples. Plasma was generated in argon and nitrogen. According to the previous measurement the best sterilization results were observed using plasma power input 2 562,96 mW•cm-3 (argon) a 2 044,44 mW•cm-3 (nitrogen), therefore the same plasma power input was applied during our measurement. Fungi spores of Aspergillus niger were used as model organisms. Whatman paper No. 1st was used as the carrying medium. Each sample series was exposed to plasma for 5, 10, 20, 40, 60, 120 and 180 s. In order to separate the effect of UV radiation generated by DBD the quartz glass transmitting UV radiation was used. During the plasma exposition one of the sample was covered with the quartz window and the other sample was directly exposed to the plasma, afterwards the results were compared. The microbial abatement observed for the samples covered by quartz window was much lower than for the the samples directly exposed to the plasma. In first case the UV radiation and temperature is the main inactivation mechanism, while in the latter one the synergistic effect of UV radiation, temperature and active species is employed. Furthermore the effect of plasma sterilization increases with increasing the plasma exposition time. While comparing results observed for the argon and nitrogen, better results were achieved in argon. Effects of UV radiation and temperature were studied separately. The temperature between the DBD electrodes was measured by means of thermocouple. Afterwards the samples were placed in an oven and exposed to the same temperature as was measured between the electrodes. By comparing the results of heat treated samples and plasma treated samples it can be assumed that the influence of the temperature during the sterilization process in DBD was negligeable. The discharge parameters were studied by means of the optical emission spectroscopy.
Influence of physical treatment of precipitated CaCO3 on the properties of PP composites
Huczala, Vít ; Ing.Vendula Balgová ,Ph.D. (referee) ; Nezbedová, Eva (advisor)
The diploma thesis deals with study of system of polypropylene and inorganic filler. As filler was used commercially available particulate filler CaCO3 termed NPCC 201. The objective of the study was a surface plasma treatment of filler in order to obtain composite based on polypropylene. Mechanical properties of this composite will show significantly greater value than basic matrix. The filler was treated in dielectric barrier plasma discharge by atmospheric pressure. The characterization of filler was performed before and after plasma treatment by x-ray photoelectron spectroscopy (XPS), electron microscope (SEM) and sedimentation analysis. The distribution of particle size was measured by laser diffraction and by dynamic light scattering. The composite materials with various weight concentration of filler were prepared in POLYMER INSTITUTE BRNO by using the twin-screw extruder and the test specimens were prepared by the injection molding technology. Their mechanical properties was studied by using of short and long-term tests. The uniaxial creep testing in tension was used for study of long-term behavior of composites.

National Repository of Grey Literature : 39 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.